Posts tagged ASME
Understanding Bias in Algorithmic Design - ASME Demand

In 2016, The Seattle Times uncovered an issue with a popular networking site’s search feature. When the investigative reporters entered female names into LinkedIn’s search bar, the site asked if they meant to search for similar sounding male names instead — “Stephen Williams” instead of “Stephanie Williams,” for example. According to the paper’s reporting, however, the trend wouldn’t happen in reverse, when a user searched for male names.

Within a week of The Seattle Times article’s release, LinkedIn introduced a fix. Spokeswoman Suzi Owens told the paper that the search algorithm had been guided by “relative frequencies of words” from past searches and member profiles, not by gender. Her explanation suggests that LinkedIn’s algorithm was not intentionally biased. Nevertheless, using word frequency — a seemingly objective variable — as a key parameter still generated skewed results. That could be because men are more likely to have a common name than American women, according to Social Security data. Thus, building a search function based on frequency criteria alone would more likely increase visibility for Stephens than Stephanies.

Examples like this demonstrate how algorithms can unintentionally reflect and amplify common social biases. Other recent investigations suggest that such incidents are not uncommon. In a more serious case, the investigative news organization ProPublica uncovered a correlation between race and criminal recidivism predictions in so-called “risk assessments” — predictive algorithms that are used by courtrooms to inform terms for bail, sentencing, or parole. The algorithmic predictions for recidivism generated a higher rate of false-negatives for white offenders and a higher rate of false-positives for black offenders, even though overall error rates were roughly the same.

Read More